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1 Introduction

The Calculus of Inductive Constructions (CIC) is the formalism behind the interactive proof as-
sistant Coq [18, 3]. It is a powerful language which aims at representing both functional programs
in the style of the ML language family and proofs in higher-order logic. Many data-structures can
be represented in this language: usual data-types like lists and binary trees (possibly polymor-
phic) but also infinitely branching trees. At the logical level, inductive definitions give a natural
representation of notions like reachability, operational semantics defined using inference rules. . .

Inductive definitions as a basis of a proof language were formalized in the early 90’s in two dif-
ferent contexts. The first one is Martin-Löf’s Type Theory [13]: this theory was originally presented
with a set of rules defining basic notions like products, sums, natural numbers, equality. . . All of
them (except for functions) are an instance of a general scheme of inductive definitions which was
studied by P. Dybjer [9]. The second one is an extension of the pure Calculus of Constructions.
In the Calculus of Constructions, there is a general impredicative product primitive which is pow-
erful enough to encode inductive definitions [4, 17], however this encoding has some drawbacks:
efficiency of computation of functions over these data-types and some properties that cannot be
proven. The extension of the formalism with primitive inductive definitions [8, 15] was consequently
a natural choice. In proof assistants based on HOL (higher-order logic), an impredicative encoding
of inductive definitions is used: this is made possible by the existence of a primitive infinite type
(including integers) and the fact that HOL is only concerned by extensional properties of objects
(not computations) [16].

2 Proof System

Inductive definitions are added on top of a pure type system (PTS) which is given by a set of
sorts (Prop and Typei) and term constructors for dependent type product (∀x,B), abstraction
(funx ⇒ t) and application (t x1 . . . xn). There is no syntactic distinction between types and
terms. Types are used to represent both sets of objects and logical properties. termes are used for
represnting both objects and proofs depending on their type.

A new inductive definition can be added to the environment: it requires to specify its name,
its arity (the type of the inductive definition) and the set of its constructors. For instance the
following definitions introduce successively booleans, unary natural numbers, the transitive closure
of a relation R and the polymorphic equality.

Inductive bool : Type := true | false.

Inductive nat : Type := O | S : nat → nat.

Inductive RT A (R : A → A → Prop) : A → A → Prop :=

RTrefl:∀ x, RT A R x x.

| RTR:∀ x y, R x y → RT A R x y.

| RTtran:∀ x y z, RT A R x z → RT A R z y → RT A R x y.

Inductive eq A (x:A) : A → Prop := eqrefl : eq x x.

The general pattern for a (mutually) inductive definition is



Inductive I1 pars : Ar1 := ...

| c : ∀ (x1:A1)..(xn:An), I1 pars u1..up
...

with I2 pars : Ar2 := ...

with ...

We introduce some terminology

– pars are called the parameters of the inductive definition and will be the same for all definitions;
– Arj is called the arity ;
– ui is an index ;
– ∀(x1 : A1)..(xn : An), I1 parsu1..up is a type of constructor
– Ai is a type of argument of constructor

There are conditions to accept that the definition is well-formed:

– Arities are of the form ∀(y1 : B1)..(yp : Bp), s, with s a sort which is called the sort of the
inductive definition.

– Type of constructors C are well-typed:

(I1 : ∀pars,Ar1)..(Ik : ∀pars,Ark) (pars) ` C : s

• if s is predicative (not Prop) then type of arguments of constructors are in the same
universe: for all i, Ai : s or Ai : Prop

• if s is Prop, we distinguish between predicative definitions where Ai : Prop for all i and
impredicative definitions where there is at least one i such that Ai : Type.

There is also a positivity condition: occurrences of Ij should only occur strictly positively in types
of arguments of constructors Ai which means that we are in one of these cases:

– non-recursive case: Ij does not occur in Ai

– simple case: Ai = Ij t1 . . . tp (not necessarily the same parameters, Ij 6∈ tk)
– functional case: Ai = ∀z : B1, B2 with Il 6∈ B1 and Ij strictly positive in B2

– nested case: Ai = J t1 . . . tp with J another inductive definition with parameters X1 . . . Xr.
When t1 . . . tr are substituted forX1 . . . Xr in the types of constructors of J , the strict positivity
condition should still be satisfied.

The language of the PTS is extended with access to the inductive definition and its constructors
plus two new constructions for pattern-matching and fixpoint.

The inductive definition itself is a new constant, its type is given by its arity and is generalized
with respect to the parameters.

Il : ∀pars,Arl

The Calculus of Constructions follows the logical rules of natural deduction where each con-
cept is associated with introduction and elimination rules. A computation rules explains how a
combination of introduction and elimination rules for the same notion (a cut) can be eliminated.

In the case of inductive definitions, introduction rules are given by the constructors.
Given that c is the i-th constructor of an inductive definition I with parameters pars and type

of constructor C, we have:

c ≡ Constr(i, I) : ∀pars, C

Elimination rules uses two different notions: a pattern-matching rule extended for dependent
types (each branch can have a different type, depending on the constructor) and a (restricted)
fixpoint construction for recursive definitions.



The primitive rule for pattern-matching comes in a very primitive way: it covers one level of
constructors and should be complete (one branch for each constructor):

t : I pars t1 . . . tp
y1 . . . yk, x : I pars y1 . . . yk ` P (y1 . . . yk x) : s′

(x1 : A1 . . . xn : An ` f : P (u1 . . . uk (c x1 . . . xn)))c

match tasx in I y1 . . . yk returnP (y1 . . . yk, x)
with . . . | c x1 . . . xn ⇒ f | . . .
end : P (t1 . . . tp t)

The reduction rule (called ι) applies when t starts with a constructor and is as expected
(reduces to the corresponding branch after instantiating the pattern variables with the arguments
of the constructor).

The main restriction lies in the relation between the sort s of the inductive definition and the
sort s′ of the pattern-matching.

When s is Type, which means that we have a predicative inductive definition, then we can have
any possible sorts s′ for case analysis.

When s is Prop however, the question is a bit more tricky for several reasons:

– Prop is an impredicative sort, so uncareful elimination can easily introduce paradoxes;

– it is sometimes useful to add an axiom of proof irrelevance for propositions (which says that
two different proofs of the same property can be considered as equal) so while it is good to be
able to prove that for instance true 6= false, a similar mechanism that will lead to two terms
(representing proofs of) in A ∨B that are provably different is less desirable;

– Prop is used for program extraction: any term in A : Prop is removed during extraction so
should not be needed for computing the informative art, in a pattern-matching is done on a
term in an inductive definition in Prop, but with the result being used for computing, then
we need to be able to execute the match without executing the head, which is only feasible in
specific cases.

For an inductive definition of sort Prop, the only elimination allowed is on the sort Prop itself.
There are exceptions where any elimination is allowed: in the specific case where I is a predicative
definition with only zero or one constructor with all its arguments Ai : Prop. The exception covers
cases like absurdity, equality, conjunction of two propositions, accessibility. . .

Fixpoint constructions in Coq are mainly introduced via global declarations.

Fixpoint f (x1:A1)... (xm:Am){struct xn}:B:=t.

they correspond to an internal fixpoint construction

fix f (x1:A1)... (xn:An):∀(xn+1:An+1)... (xm:Am)B := fun xn+1... xm ⇒ t.

In general, an expression fix f(x1 : A1) . . . (xn : An) : B := t is well typed of type B when

– t is well-typed of type B in an environment containing (f : ∀(x1 : A1) . . . (xn : An), B) and
(x1 : A1) . . . (xn : An);

– t satisfies an extra syntactic condition that recursive calls to (f u1 . . . un) in t are made on
terms un structurally smaller than xn.

The reduction rule is the usual fixpoint reduction except that in order to avoid infinite loops, it is
only activated when the n-th argument of the fixpoint starts with a constructor.



3 Proof-Theoretical Properties

Proof theoretical properties of systems like the Calculus of Constructions are complex to perform
in full detail, first because these systems are logically powerful (due to the impredicativity, the
hierarchy of universes, the type dependency) and second because there are many syntactic prop-
erties to be established like the Church-Rosser property or subject-reduction which are made even
more complicated because of the general pattern of inductive definitions. Several proofs covering
subsystems of Coq exists, Bruno Barras in his thesis formalized and proved meta-theoretical prop-
erties (including typing decidability assuming normalization) of a Calculus of Constructions with
Inductive Definitions.

4 Pragmatic Properties

Inductive definitions are an appropriate formalism to introduce complex data-structures without
extra encoding and to define recursive functions on these data. Because of type dependency, it is
even possible to embed specification parts inside the type, leading to a very precise description.
Computation is part of the Coq kernel, many efforts have been made to make it more efficient
using compiler technologies. With inductive definitions, the Coq language contains a mini ML sub-
language (with no effect and only terminating functions). It is convenient for formalizing complex
programs which can then be proven, the most impressive example being the CompCert project of
a optimizing compiler for C programs [12]. A second benefit is the ability to implement inside Coq
various decision procedures and then to prove a scheme of reflection which allows to use the result of
the execution of the procedure in order to build proofs of complex facts. The (partial)-correctness
of the procedure is proven once and then the proof of any instance of the problem is reduced
to a simple computation. This principle can be used for complex procedures but also for simple
reasoning steps. The popular Ssreflect [11] (for small scale reflection) environment (including a
tactic language and libraries) which has been successfully used for formalizing in Coq the four
color theorem and the Feit-Thompson theorem use intensively this computational capability of
the Coq system mainly on the type of booleans.

Inductive definitions are also the basis of a more declarative style of specifications. Inductive
definitions of families are a natural way to encode relations like reachability, or semantics of pro-
gramming languages or transition systems. Proofs can be done using a resolution-like mechanism.

5 Proof Applications

Coq is developed for more than 30 years now and there has been a lot of impressive examples
formalized using it.

Many interesting proofs combine advanced algorithms and non-trivial mathematics like the
proof of the four-color theorem by Gonthier & Werner at INRIA and Microsoft-Research [10], a
primality checker using Pocklington and Elliptic Curve Certificates developed by Théry et al. at
INRIA [19] and the proof of a Wave Equation Resolution Scheme by Boldo et al. [5]. Coq can also
be used to certify the output of external theorem provers like in the work on termination tools by
Contejean and others [7], or the certification of traces issued from SAT & SMT solvers done by
Grégoire and others [1]. Coq is also a good framework for formalizing programming environments:
the Gemalto and Trusted Logic companies obtained the highest level of certification (common
criteria EAL 7) for their formalization of the security properties of the JavaCard platform [6]; as
mentioned earlier Leroy and others developed in Coq a certified optimizing compiler for C (Leroy
et al.) [12]. Barthe and others used Coq to develop Certicrypt, an environment of formal proofs
for computational cryptography [2]. G. Morrisett and others also developed on top of Coq the
Ynot library for proving imperative programs using separation logic [14]. These represent typical
examples of what can be achieved using Coq.



6 Trends and Open Problems

The current inductive definitions of Coq present certain drawbacks. The syntactic condition for
accepting fixpoints is very sensitive and not well-suited when developing a proof using tactics.
Different approaches using type annotations have been proposed instead but none of them is
yet available for Coq. Also the primitive pattern-matching is not the natural expected rule when
dealing with elimination of a particular instance of an inductive definition, where you expect some
cases to disappear or to be partially instantiated.

In systems like Coq there always is a trade-off between keeping the language and the kernel
small enough to ensure correctness and use encodings for more high-level constructions or include
these constructions directly in the language.

In general the defined equality in the Calculus of Inductive Constructions does not have all the
expected properties. The current work on Homotopy Type Theory [20] is an attempt to solve this
problem. It includes a notion of generalized inductive definitions where the equality definition is
included in the declaration, making the definition of quotient types more direct.

7 Conclusions

The Calculus of Inductive Constructions provides a powerful language for the interactive develop-
ment of proofs and programs. It includes a mini functional programming languages that is sufficient
for programming complex data-structures and programs. The specification language itself can use
a declarative style with (almost) no limit to the expressiveness.
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